Subequivalence relations and positive-definite functions
نویسندگان
چکیده
منابع مشابه
Subequivalence Relations and Positive - Definite Functions
Consider a standard probability space (X,μ), i.e., a space isomorphic to the unit interval with Lebesgue measure. We denote by Aut(X,μ) the automorphism group of (X,μ), i.e., the group of all Borel automorphisms of X which preserve μ (where two such automorphisms are identified if they are equal μ-a.e.). A Borel equivalence relation E ⊆ X is called countable if every E-class [x]E is countable a...
متن کاملGENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS
A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...
متن کاملSome numerical radius inequalities with positive definite functions
Using several examples of positive definite functions, some inequalities for the numerical radius of matrices are investigated. Also, some open problems are stated.
متن کاملInterpolation with Positive Definite Functions
I t i s well-known t h a t k r i g i n g and i n t e r p o l a t i o n by s p l i n e s a r e e q u i v a l e n t . Kr ig ing i s based on a s t o c h a s t i c f o r m u l a t i o n whereas s p l i n e s a r e f o r m u l a t e d I n a d e t e r m i n i s t i c way. A t h i r d p r e s e n t a t i o n i s g i v e n i n terms of Rad ia l P a s i s F u n c t i o n s . The c n n n e c t l o n s b...
متن کاملStrictly Hermitian Positive Definite Functions
Let H be any complex inner product space with inner product < ·, · >. We say that f : | C → | C is Hermitian positive definite on H if the matrix ( f(< z,z >) )n r,s=1 (∗) is Hermitian positive definite for all choice of z, . . . ,z in H, all n. It is strictly Hermitian positive definite if the matrix (∗) is also non-singular for any choice of distinct z, . . . ,z in H. In this article we prove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Groups, Geometry, and Dynamics
سال: 2009
ISSN: 1661-7207
DOI: 10.4171/ggd/71